

B0A1290065CC550MXXXX-载体上的增强光放大器

产品特点

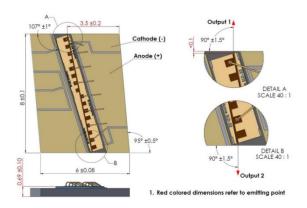
高输出功率 >550mW @ 1290nm, 高饱和输出功率 (22dBm), 专有防反射涂层 技术, 可靠性高

产品型号

BOA1290065CC550MXXXX

应用领域

LiDAR 数据通信 扫频源 可调激光器 光学相干断层扫描


(OCT)

核心参数

中心波长	饱和输出功率	带宽
1290nm	22dBm	65nm

尺寸图

详细参数

推荐操作条件

@ CW, 样品安装在铜散热器上

参数	Min. 值	典型值	Max. 值	单位
散热器温度	20	25	30	°C
正向电流		2000	3000	mA
放大模式下的输出功率			550	mW
输入光功率*	-20	10	15	dBm

*-考虑光纤芯片耦合效率

增益特性

@ CW, 25° C, 2000mA, 输入信号 10dBm, 1300nm

参数	Min. 值	典型值	Max. 值	单位
正向电流@450mW			3000	mA
饱和输出功率@-3dB	18	22		dBm

増益		18		dB
小信号增益@-20dBm		43		dB
峰值波长		1290	1300	nm
带宽@-3dB		65		nm
噪声系数@Pin=-20dBm (不包括输入耦合)			5	dB

放大自发辐射(ASE)特性

@CW, 25°C, 2000mA, 无输入信号

参数	Min. 值	典型值	Max. 值	单位
输出功率 (每个端口)		175		mW
正向电压		1.6	2.2	V
平均波长		1225		nm
带宽 (FWHM)		15		nm
纹波** (RMS)		0.04	1	dB
慢轴光束发散度 (FWHM)	4	8	11	deg
快轴光束发散度 (FWHM)	24	28	33	deg
偏振消光比 (PER)	14	18		dB
偏振		TE		

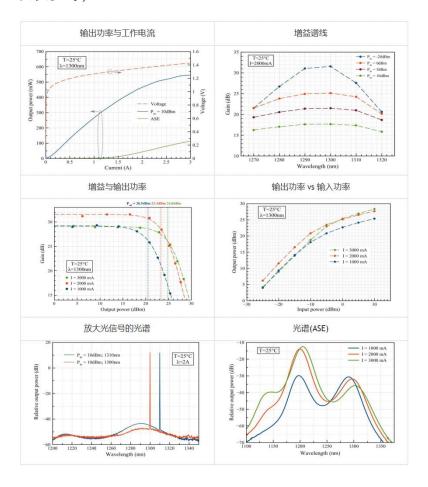
** - 以 20pm 分辨率在光谱 Max. 值附近 1nm 范围内测量

jue 对 Max. 额定参数

参数	Min. 值	Max. 值	单位
输出光功率		1300	mW
输入光功率		20	dBm
正向电流		4000	mA
反向电压		2	V
焊接温度 (最长 5 秒)		250	°C
芯片工作温度 (高于露点)	5	50	°C
存储温度	5	50	°C

芯片参数						
参数	Min. 值	典型值	Max. 值	单位		
芯片长度		8		mm		
正面的背向反射			0.001	%		
背面的背向 反射			0.001	%		

型号识别



BOA1290065CC550MXXXX -> 输出功率为 550mW, 平均波长为 1290nm, 带宽为 65nm, 载波芯片

特性曲线

典型性能(仅供参考)

操作说明

安全和操作说明

此设备发出的光是不可见的,对人眼有害。设备运行时,请避免直视光纤连接器。 在连接器打开的情况下操作时,必须佩戴适当的激光安全眼镜。

jue 对 Max. 额定值仅可短时间应用于设备。长时间暴露于 Max. 额定值或暴露 于多个 Max. 额定值可能会导致设备损坏或影响设备的可靠性。在设备的 Max. 额定值之外操作设备可能会导致设备故障或安全隐患。必须使用与组件一起使用 的电源,以使 Max. 正向电流不超过。

热辐射器上的设备需要适当的散热器。必须使用 4 个螺钉(以 X 型螺栓拧紧, 初始扭矩设置为 0.075Nm, 最终以 X 型螺栓拧紧, 扭矩设置为 0.15Nm) 或夹具 将设备安装在散热器上。散热器表面的平整度偏差必须小于 0.05mm。建议在外

壳底部和散热器之间使用铟箔或导热柔软材料作为热界面。不宜为此使用导热油 脂。

避免设备背反射。它可能会影响设备在光谱和功率稳定性方面的性能。

还可能导致致命的面损坏。强烈建议使用光隔离器来阻挡背反射。

不要拉动光纤。不要弯曲半径小于 3 厘米的光纤。在安装过程中,应始终保护 光纤顶部免受任何污染或损坏。取下光纤顶部的防尘盖后,使用沾有异丙醇或乙 醇的光学镜头清洁纸或棉签沿一个方向擦拭, 小心清洁光纤顶部。仅使用干净的 光纤连接器操作设备。

ESD 保护 - 静电放电是产品意外故障的主要原因。采取极端预防措施以防止 ESD。在设备安装过程中,必须保持 ESD 保护 - 在处理产品时使用腕带、接地 的工作表面和严格的防静电技术。

