

红外非线性 ZnGeP2(ZGP) 磷锗锌晶体 7x5x15 mm

产品描述

本产品由于具有独 te 的功能,ZnGeP2、 AgGaSe2、AgGaS2、 GaSe 和 ZnTe 作 为光学非线性晶体,在中红外和远红外应用方面已经赢得了人们极大的兴趣。它 们的应用包括:中红外波段 OPO,近、中红外波段频率转换, CO2 激光倍频, THz 生成。红外非线性晶体 具有大的有效光学非线性,宽的光谱和角度接收范 围,透光范围宽,对温度稳定性和振动控制没有苛刻的要求,可以进行良好的机 械加工(GaSe 除外)。其它晶体有: CdSe, CdS, CdZnTe, CdTe, ZnSe,ZnS

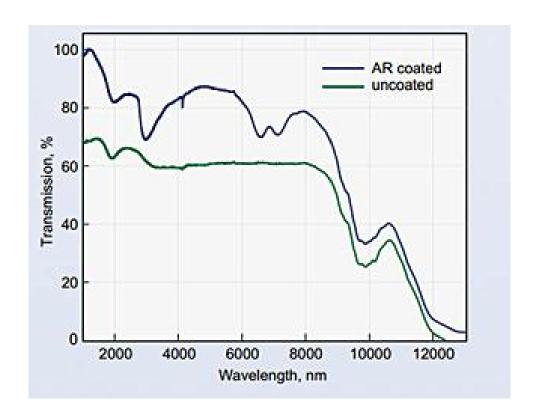
产品型号

TL-ZP-401

核心参数

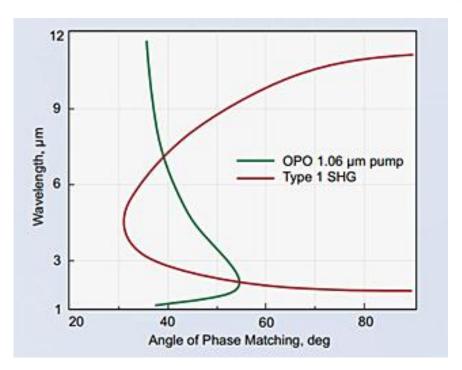
规格

7x5x15 mm



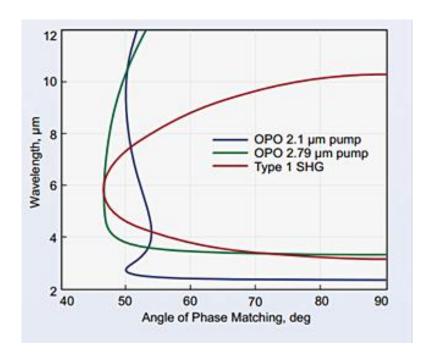
详细参数

1、AgGaS2 硫镓银晶体

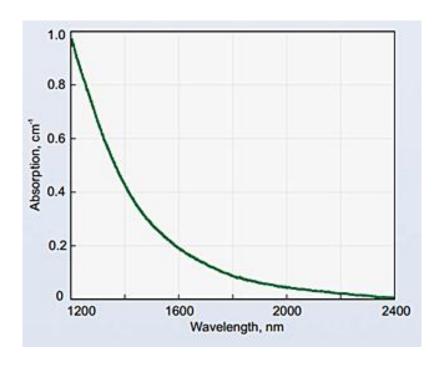

 $AgGaS_2$ 简称 AGS 晶体,中文名是硫镓银晶体,他的透光波段为 0.53 至 12 μ m。 虽然其非线性光学系数在上述提到的红外晶体中是 Min 的,但是其边缘为 550 nm 短波长高透光度被用于 Nd:YAG 激光泵浦的 OPO, 也被大量应用于利用二 极管、掺钛蓝宝石、Nd:YAG 和红外燃料激光器进行的差频混频实验,直接红外 对抗系统,以及 CO2 激光倍频。通过信号和飞秒 OPO 系统驻波的差频,硫镓 银晶体薄片在中红外波段超短脉冲发生方面用的很普遍。

14 mm 长镀增透膜和用于被 Nd:YAG 激光泵浦的 OPO 的 AgGaS₂晶体的透过 光谱

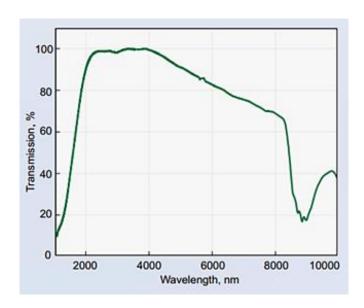
AgGaS2晶体 1型 OPO 和 SHG 调谐曲线


2、ZnGeP2晶体(简称 ZGP 晶体),磷锗锌晶体

ZnGeP₂磷锗锌晶体的透光波段为 $0.74 \cong 12 \mu m$,其中有用的透光范围从 1.9至 $10.6 \, \mu m$ 。 $ZnGeP_2$ 拥有 Max 的非线性光学系数和较高的激光损伤阈值。它 成功地应用于以下应用领域:

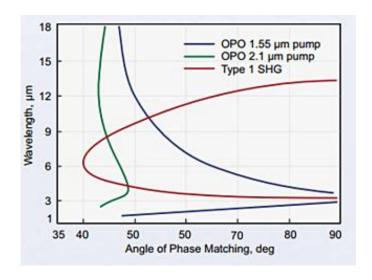

- 通过与 10.6 µm 波长混频的 CO2激光的上转换;
- CO和 CO₂激光辐射的和频;
- 脉冲式 CO、CO₂和 DF 化学激光的高效倍频;饵和钬激光泵浦时的中红外 OPO 光的发生。

EKSMA光学提供具有最低吸收<0.04 cm-1@2.1 μm的 ZnGeP₂ 晶体,更好的适应 OPO 或 OPA 应用,然后泵浦 2.05-2.1 μ m,镀增 透膜。

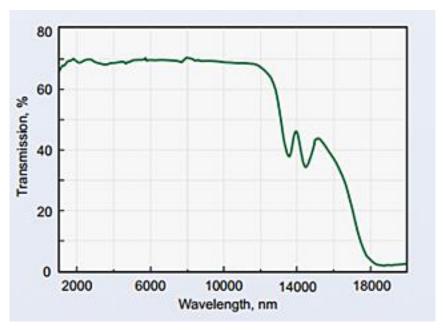


ZnGeP2晶体 1型 OPO 和 SHG 调谐曲线

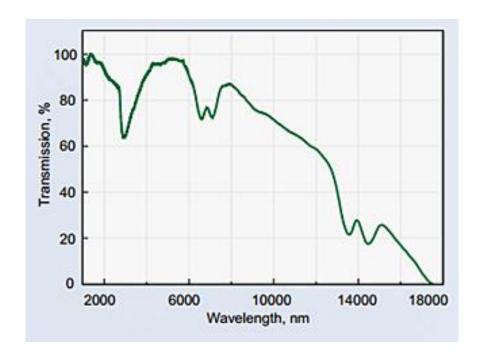
ZnGeP2 晶体在 2 μm 附近的吸收光谱



15 mm 长镀增透膜 ZnGeP2 晶体 OPO@2.1 μm 的透过光谱

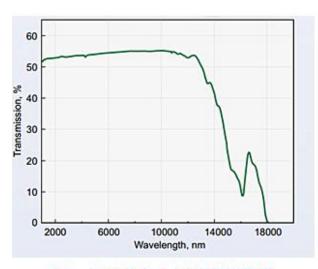

3、AgGaSe2 硒镓银晶体

AgGaSe2 硒镓银晶体晶体的透光波段在 0.73 至 18 μm 波段之间。其有用透光范围 0.9-16 μm 及宽的相匹配能力,在被多种当前常用激光泵浦时,能为 OPO 应用提供很有潜力的应用。在 2.05 μm 的 Ho:YLF 激光泵浦下,已经获得 2.5-12 μm 的波长,以及在 1.4-1.55 μm 激光泵浦下,获得 1.9-5.5 μm 的非临界相位 匹配操作。脉冲式 CO2 激光的高效倍频已经得到证明。



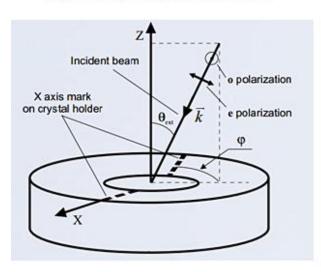
AgGaSe2 晶体 1型 OPO 和 SHG 调谐曲线

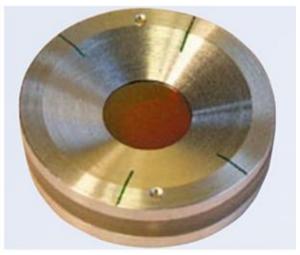
18 mm 长无镀膜 AgGaSe2 晶体的透过光谱



25 mm 长镀增透膜的 AgGaSe2 晶体的透过光谱

4、GaSe 硒化镓

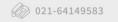

GaSe 硒化镓晶体 的 透 光 波 长 在 0.65 至 18 μm 之间. GaSe 晶体已经 成功的应用于以下方面: CO2 激光的高效倍频, 脉冲式 CO、CO2 和 DF 化学 激 $\mathcal{H}(\lambda = 2.36 \, \mu \text{m})$ 倍频,CO 和 CO2 激光向可见光的上转换,通过钕和红外燃料 激光器或(F-)-centre 激光脉冲的差频混频产生红外脉冲, 3.5-18 μm 范围内 OPG 光的发生,飞秒脉冲泵浦时 0.2-5 THz 范围的高效太赫兹发生。由于材料 结构(沿(001)平面切开)限制了应用领域,为了得到特定相位匹配角的晶体切割是 不可能的。



15 E Type 1 SHG Type 2 SHG Wavelength, 10 5 0 20 40 80 90 Angle of Phase Matching, deg

17 mm长无镀膜GaSe晶体的透过光谱

GaSe晶体Type 1 和Type 2 SHG调谐曲线



物理特性:

晶体	ZnGeP ₂	AgGaSe₂	AgGaS₂	GaSe	ZnTe
晶体对称性	四方	四方	四方	六角	立方闪锌矿
点群	42m	42m	42m	62m	43m
晶格常数, Å a	5.465	5.9901	5.757	3.742	6.1037
с	10.771	10.8823	10.305	15.918	-
密度, g/cm³	4.175	5.71	4.56	5.03	5.633

光学特性:

晶体	晶体		AgGaSe2	AgGaS2	GaSe	ZnTe
透光范围	,μm	0.74-12	0.73-18	0.53-12	0.65-18	0.65-17
折射率	@					
	no	3.2324	2.7005	2.4508	2.9082	
1.06 μm	ne	3.2786	2.6759	2.3966	2.5676	2.7779
	no	3.1141	2.6140	2.3954	2.8340	
5.3 μm	ne	3.1524	2.5823	2.3421	2.4599	2.6974
	no	3.0725	2.5915	2.3466	2.8158	
10.6 μm	10.6 μm ne		2.5585	2.2924	2.4392	2.6818
吸收系数, cı	m-1 @					

1.06um	3.0	<0.02	<0.09	0.25	-
2.5um	0.03	<0.01	0.01	0.05	-
5.0um	0.02	<0.01	0.01	0.05	-
7.5um	0.02	-	0.02	0.05	-
10.0um	0.4	-	<0.06	0.05	-
11.0um	0.8	-	0.06	0.05	-

非线性光学特性:

晶体	ZnGeP2	AgGaSe2	AgGaS2	GaSe	ZnTe
激光损失阈值, MW/cm2	60	25	10	28	-
@脉宽, ns	100	50	20	150	-
@波长, μm	10.6	2.05	1.06	9.3	-
非线性, pm/V	111	43	31	63	-
Type 1 SHG 的相位匹配角@ 10.6 μm, deg	76	55	67	14	-
Walk-off角@5.3 μm, deg 0.57	0.57	0.67	0.85	3.4	-

热学特性:

晶体	ZnGeP2	AgGaSe2	AgGaS2	GaSe	ZnTe
熔点, ℃	1298	851	998	1233	1295
热膨胀系, 10-6/oK					

Т	17.5(a)	23.4(c)	12.5	9.0	8.0
Τ	9.1(b)	18.0(d)	-	-	-
II	1.59(a)	-6.4(c)	-13.2	8.25	-
II	8.08(b)	-16.0(d)	-	-	-

@ 293-573 K, b) @ 573-873 K, c) @ 298-423 K, d) @ 423-873 K

计算折射率的 SELLMEIER 方程:

晶体		A	В	С	D	E	F	表达式
	no	8.0409	1.68625	0.40824	1.2880	611.05	-	n2=A+Bλ2/(λ2-C)+Dλ2(λ
ZnGeP2	ne	8.0929	1.8649	0.41468	0.84052	452.05	-	2-E)
	no	6.8507	0.4297	0.15840	0.00125	-	-	
AgGaSe2	ne	6.6792	0.4598	0.21220	0.00126	-	-	n2=A+B/(λ2-C)-Dλ2
	no	3.3970	2.3982	0.09311	2.1640	950.0	-	n2=A+B/(1-C/λ2)+D/(1-E/λ
AgGaS2	ne	3.5873	1.9533	0.11066	2.3391	1030.7	-	2)
	no	7.443	0.405	0.0186	0.0061	3.1485	2194	n2=A+B/λ2+C/λ4+D/λ
GaSe	ne	5.76	0.3879	-0.2288	0.1223	1.855	1780	6+E/(1-F/λ2)
ZnTe	No, ne	9.92	0.42530	0.37766	2.63580	56.5	-	n2=A+B/(λ2-C2)+D/(λ 2/E2-1)

可以根据客户要求提供的其它晶体有: CdSe, CdS, CdZnTe, CdTe, ZnSe, ZnS ZnTe/碲化锌:

碲化锌晶体在<110>方向被用于通过光整流过程来产生太赫兹。光整流效应是 晶体的二阶非线性光学效应, 也是一种特殊的差频效应。对于有一定带宽的飞秒 激光脉冲,不同的频率分相互作用产生从0到几太赫兹的带宽。太赫兹脉冲的整 流是通过碲化锌晶体另一个<110>方向内自由空间电光整流产生的。太赫兹脉 冲和可见光脉冲在碲化锌晶体内直线传播时,太赫兹脉冲在碲化锌晶体内产生双 折射,这一现象被线偏振可见光脉冲读出。当可见光脉冲和太赫兹脉冲同时在同 一晶体内传播时,可见偏振光在太赫兹脉冲作用下产生旋光,用一个\/4 波片和 一个分束偏振器以及一组平衡光电二极管,通过监控可见光脉冲从碲化锌晶体出 射后的偏振旋转相对于太赫兹脉冲的一组延迟时间,就可以监测太赫兹脉冲的振 幅轨迹。能够读出完整的电场、振幅和延迟,是时域太赫兹光谱的魅力之一。 碲化锌也被用于红外光学元件基板和真空沉积。我们可提供尺寸为Ø40x30 mm 的光学元件。

注意: 碲化锌含有微气泡,这并不影太赫兹的产生,然而,它们在晶体被照明 时的投影下是可见的。我们不接受关于晶体内有气泡的投诉。

订购信息

如何订购: ZnGeP2 (ZGP) Crystals

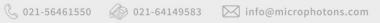
货号	Size, mm	θ	φ	镀膜	标注	交货 期
TL-ZP-401	7x5x15 mm	54°	0°	AR@2.1μm+BBAR@3.5-5μm	OPO @ 2.1-> 3.5-5 μm	3周
TL-ZP-402	7x5x20 mm	54°	0°	AR@2.1μm+BBAR@3.5-5μm	OPO @ 2.1-> 3.5-5 μm	3周

TI 7D 402	7	F 40	00	AD @ 2 1 DD AD @ 2 F 5	OPO @ 2.1->	C E
TL-ZP-403	7x5x25 mm	54°	0°	AR@2.1μm+BBAR@3.5-5μm	3.5-5 μm	6周

AgGaS2 (AGS) Crystals

货号	Size, mm	θ	φ	镀膜	标注	交货期
TAGS-401H	5x5x1 mm	39°	45°	BBAR/BBAR @ 1.1-2.6 / 2.6-11 μm	DFG @ 1.2-2.4 μm -> 2.4-11 μm, Type 1	1周
TAGS-402H	6x6x2 mm	50°	0°	BBAR/BBAR @ 1.1-2.6 / 2.6-11 μm	DFG @ 1.2-2.4 μm -> 2.4-11 μm, Type 2	联系我们
TAGS-403H	5x5x0.4 mm	34°	45°	BBAR/BBAR @ 3-6 / 1.5-3 μ m	SHG @ 3-6 μm, Type 1	1周
TAGS-801H	8x8x0.4 mm	39°	45°	BBAR/BBAR @ 1.1-2.6 / 2.6-11 μm	DFG @ 1.2-2.4 μm -> 2.4-11 μm, Type 1	1周
TAGS-802H	8x8x1 mm	39°	45°	BBAR/BBAR @ 1.1-2.6 / 2.6-11 μm	DFG @ 1.2-2.4 μm -> 2.4-11 μm, Type 1	1周

AgGaS2 crystals are provided mounted into 25.4 mm diameter ring holder.


关于晶体选择列表仅供客户参考:

A-F 系列	G-H 系列	L-N 系列	P-Z 系列
Al2O3	GaTe	LaAlO3	PbWO4
Al	GaN	LiTaO3	PbF2
Au	GaP	LiNbO3	PbS
Ag	Ga: ZnO	LiF	PIN-PMN-PT
AIN 单晶	GdScO3	LSAT	PMN-PT
BaF2	GaSb	LaF3	SrTiO3 (国产,进口,Ti 面终止 SrTiO3)

BaTiO3	GaAs	LiAlO2	SrLaAlO4
BGO	Graphite(普通;热解)	LGS 硅酸镓镧	SrLaGaO4
BSO	GaSe	LiGaO2	Si(超薄 Si 片)
Bi2Te3	GGG (Gd3Ga5O12)	LGT钽酸镓镧	SiC (4H,6H,3C)
Bi2Se3	Ge	MgAl2O4	SBN
Bi2Se2Te	Hg(1-x)Cd(x)Te	MgF2	SiO2 (玻璃和单晶)
Bi2Te2Se	InP	MgO	Si-Ge
BP 黑磷	InAs	MoSe2	TiO2(锐钛矿型,金红石型)
CdS	InSb	MoS2	TbScO3
Csl (Tl)	KH2PO4	MoTe2	TGG
CaCO3	KTaO3	MgO:LiNbO3	TeO2
Cu (单晶)	KTa 1-X NbXO3	NdCaAlO4	WTe2
CdSe	KCI	NaCl	WS2
Ce:Lu2SiO5	KTN	Nb:SrTiO3 (国产, 进口)	WSe2
CdWO4	HOPG	NdGaO3	YAG
CdZnTe		NaCl	YSZ
CdTe		Ni	YAIO3
CeF2			YVO4
CaF2			ZnTe
DyScO3			ZnSe
Fe:SrTiO3			ZnO
Fe3O4			ZnS
Fe2O3			Zero diffraction plate (Si 和 SiO2)

操作说明

关于质量控制实验室:

Terahertzlabs 光学的质量控制实验室通过使用高度专业化的设备和工艺,能够 为客户提供高质量的精密光学元件。质量控制实验室配备了防振光学平台、层流 罩和超声波清洗机, 此外还配备了一系列高精度的测量设备来进行各种各样的测 试。

光学测试:

- 1, Genesys-2 分光光度计:用于 200-1100 nm 波段透过率的精密测量;
- 2, EKSPLA laser spectrophotometer 用于 210-2300 nm 波段透过率和反 射率的精密测量,激光光 束直径<1 mm;
- 3, ESDI Intellium Z100 Fizeau Interferometer 用 633 nm 波长测量面形 和透过波前畸变的计算机控制科学干涉仪,标准具精度 lambda/20;
- 4,EKSPLA NL220 laser Nd:YAG 激光器,工作波长 1064、532、355 和 266 nm,用于晶体角切精度测量、晶体效率和方向性测试;
- 5, Moeller-Wedel Optical Elcomat vario 140/40 Autocollimator;
- 6,G-5 Ganiometers 用于测量棱镜和楔角片角度,以及平面光学元件 的平行度和塔差;
- 7, Nikon Microscopes 56-400 倍放大显微镜,带 CCD 相机,用于表面质 量检测;
- 8, Trioptics Super-Spherotronic HR Spherometer;

实验室能力:

光学实验室具有如下能力:

- 1,光学和几何参数测量,如焦距、折射率、曲率半径、角度和塔差,用于波长转 换(二、三次倍频)的光轴方向测量;
- 2,表面质量测量,按照 MIL、ISO 或 DIN 标准;
- 3, 平面度测量:波前畸变(反射和透过光束);
- 4, 棱镜和楔角片角度测量, 平面元件的平行度测量;
- 5,材料和薄膜镀膜光谱测量,和/或角反射和透过率测 量 (200-2300 nm);
- 6, 用 ZEMAX 软件进行光学设计。