

FP 激光二极管模块 (1310nm 30mw SMF-28E+ FC/APC)

描述

LDRVMINI 是一款用于蝶形半导体激光器的电流驱动与温度控制模块。其主要功能包括:控制激光器内部温度、产 生恒流信号驱动激光器,并可将外部输入电压信号转换为电流驱动。模块具有两种最大电流驱动范围,适用于不同 功率大小的激光器 (通过电路板跳线进行选择)。

产品特点

尺寸小巧, 远程通讯, 可定制 (630-1600nm 任意波段)

产品型号

PL-FP-1310-30-A81-SA

应用领域

测试光谱 泵浦激光器 激光通讯

核心参数

中心波长	输出功率
1310nm	30mW

尺寸图

主要参数

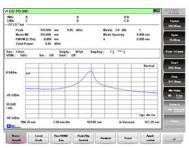
特性	最小	最大	单位	注释
电源电压	4.8	5.5	VDC	直流
功率	5	10	W	
激光驱动电流	0	149/378	mA	可选
激光驱动电压	0	3.1	V	@380mA
响应频率	0	10	MHz	-3db
温度控制范围	0	50	°C	

TEC 输出电流	-1.5	1.5	А	
TEC 输出电压	-4.4	+4.4	V	
模拟输入	-2.5	2.5	V	

可选波长

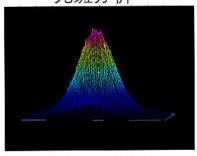
波长 (nm)	功率 (mW)	线宽 (nm)	波长 (nm)	功率 (mW)	线宽 (nm)
405	50	0.8	910	100	0.8
520	20	0.8	940	100	0.8
633	30	0.8	1050	50	1.5
655	20	0.8	1064	70	0.5
795	20	0.8	1310	30	0.5
830	70	0.5	1335	30	0.5
840	30	0.5	1550	100	3
850	40	0.5	1650	100	3

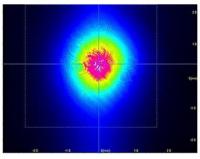
特性曲线



1310nm FP光谱图

940nm FP光谱图


1550nm FP光谱图



功率稳定性测试

光斑分析

订购信息

PL-FP-□□□□-☆-A8▽-XX

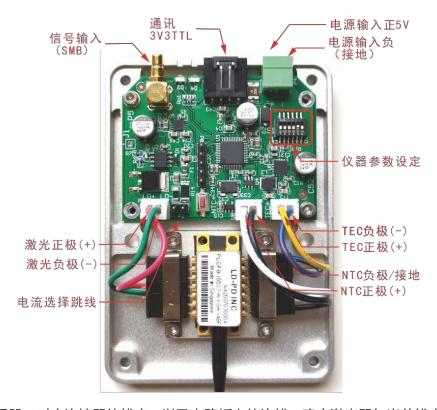
0000:波长

☆:输出功率

▽: 波长公差范围

XX: 光纤和连接器类型

SA=SMF-28E+FC/APC


SP=SMF-28E+FC/PC

PP=PM Fiber+FC/PC

PA=PM Fiber+FC/APC

安装说明

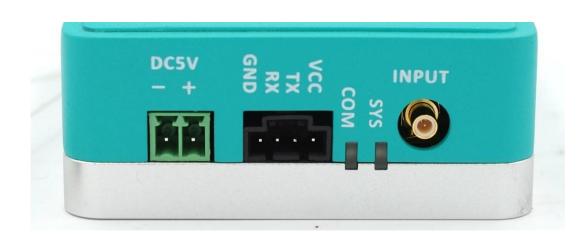
请务必先参照激光器手册,对应连接器的线序,以及电路板上的连线,确定激光器与当前线序兼容。在不正确的线序下通电可能导致激光器损坏!

模块的电源负极输入,底板及 NTC 负极均接地。且驱动输出的正极与负极均不接地。当要安装的激光器的有任一功能引脚接地(连接其外壳)时,据需要引起注意。

当存在激光功能引脚接地情况(如激光正极接地)时,需要在激光器与底壳之间垫一块粘性导热硅胶,且不要用金属螺钉来固定激光,以使激光器外壳与底壳绝缘。如果不确定,请咨询销售方的工程师!不正确的接地将导致模块功能异常甚至烧毁激光器。

硬件参数配置

在上电之前,模块需要调整电路参数以适应所安装的激光器。参数由电路板上跳线和拨码开关控制。


务必在断电情况下操作!

请将 LDRVMINI 的最大驱动电流设置为等于或稍大于激光的最大允许电流。如果将驱动电流设置过大, 将增加激光器烧毁的风险。设置由电路板上 P2 跳线和拨码开关组成

		拨码开关位号	-	
1	2, 3		4	, 5, 6
最大电流选择	TEO	C·最大电压	TEC	·最大电流
×	×	2.5V	×××	0.5A
旦 P2·断开		3.3V	××	0.7A
150mA	×	4V		0.85A
×		4.4V	* **	1.0A
旦 P2·短路			\times	1.2A
380mA			MMM	1.5A

发码开关:1·与电流选择跳线:P2·需对应,否则仪器不能正常工作!所有操作应在 断电情况下执行。

面板

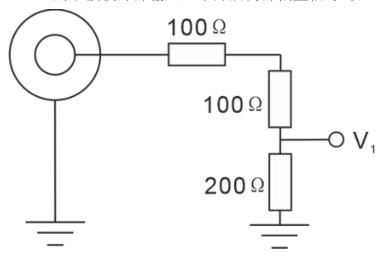
从左到右依次:

电源接口: 3.81mm 接头, 5V3A

通讯接口: 串行通信,波特率 115200bps,8 位数据位,1 位停止位,无校验位; 3.3V

TTL 电平。可使用跳线短接 GND 和 RX 针,使系统按照设定好的内部电流开始驱动激光,请务必在

完 quan 设置好各参数以后再使用该功能。

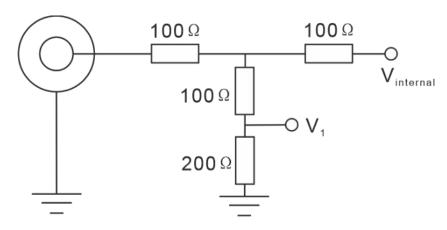

COM 灯: 通讯指示灯, 当 GND 和 RX 短接时显示红灯

SYS 灯:系统状态灯。当未安装激光或激光温度未稳定到设定值时,显示黄灯。激光温度已稳定时, 显示绿灯。当开启内部驱动电流时,显示红灯。

INPUT: SMB 接头, 输入电压 0~2.5V, 输入频率 0~10MHz

外部信号输入

仪器后面板信号输入端 INPUT 用于接收外部输入,不开启内部偏置信号时,等效电路如下图所示:



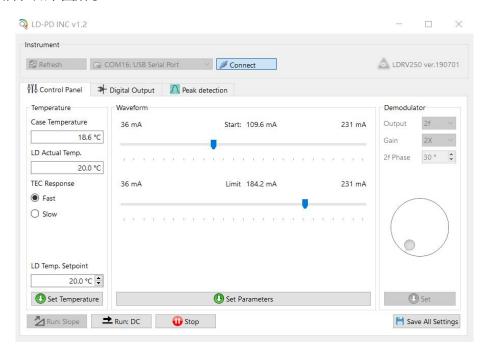
激光器的驱动电流为:

 $I_{Laser} = (V_1/1.25V) \times I_{max}$

Imax=149mA or 378mA

当开启内部信号时,等效电路如下:

若仅使用内部信号,应断开 INPUT 接口上的一切连接。如果要同时使用内部和外部信号,请按照上述的等效电路



来自行计算最终效果。

PC 控制界面

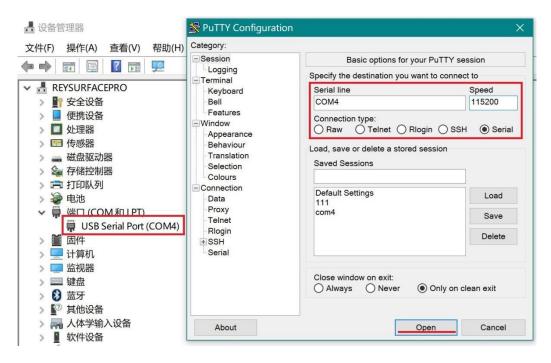
装回仪器盖板,将控制器连接电源,并用 USB 线连接电脑。按下①电源按钮打开仪器。WIN7 及以上系统会提示 自动联网安装 USB 驱动。当使用其他系统或无法联网时请在 http://www.ftdichip.com/Drivers/VCP.htm 下载 对应驱动。驱动安装好后会在"设备管理器"出现虚拟串行设备。

打开电脑端专用软件, 如下图所示:

在 Communication Port 中找到对应的虚拟串口,若未找到,点击 Refresh 按钮。点击 Connect 按钮,正常握 手后控制台变亮,并读取控制器的当前设定值。在 LD Temp Setpoint 输入需要的工作温度,点击 Set Temperature 设定。Start 滑动条设定恒定工作电流值, Limit 滑动条设定最大限制电流。点击下方的 Set Parameters 将参数发送至仪器。点击 Save All Settings 将所有参数保存在仪器中。

点击 Run:DC 将以设定的电流值启动激光器。Limit 滑动条用于保护激光器,在外部输入情况下也能限制电流,请 设置为激光器参数表中的最大工作电流

启动激光前,请仔细检查各参数是否在激光器的允许工作范围内!


通讯说明

专用转换线缆将电路板连接至电脑 USB 或串口。USB 转换器采用 FT232R 芯片模拟串口,WIN7 以上系统会自 动联网安装驱动。其他系统或未联网时请在

http://www.ftdichip.com/Drivers/VCP.htm 下载对应驱动。驱动安装好后会在"设备管理器"出现新的串行设备, 通讯速率默认为 115200bps。通过接收 ASCII 格式串行命令改变参数,命令以回车结束。

以下以 PuTTY 为例说明通讯方法。打开 PuTTY 后,连接选择 Serial,输入与设备管理器中一致的端口号, Speed 中输入 115200, 点击 open 即可打开黑色的交互端

口,通过键盘输入相关指令即可(Backspace 按键无效)。正确输入命令后系统会有提示设置结果,错误会返回 error 信息。

电脑为主控端 (上位机) , 发送字符串命令。以":"冒号作为起始符开始一行命令, 以回车(\r\n)结束一行, 下位 机执行后返回信息。以下所有功能均可通过配套软件

021-64149583

访问,建议以配套 LDPD 软件完成设置并得到正确波形后,点 save 保存参数至下位机,再转由其他客户端来进 行控制。

运行模式如下:

	运行模式
	>>>>> 发送 auto on 开始,返回(1)Auto run started.[[OK]]\r\n
	>>>>> 激光器加载所设定的电流
1	>>>>> 发送 auto off 停止, 返回(0)Auto run stopped.[[OK]]\r\n

参数设置:

发送	功能及返回值	
	返回下位机当前的参数:	
	>> 第 一 行 (%f) TEC.\r\n	
	>> (浮点数,与下发的参数一致)	
	>> 第二行 (%d,%d,%d) PGA,freq,amp.\r\n	
about	>> (对 LDRV 模块,以上为无意义参数)	
	>> 第三行(%d,%d,%d) bias.\r\n	
	>> (数值与下发命令 bias a,b,c 一致)	
	>> 第 四 行 (%d,%d) dm,phase.\r\n	
	>> (LDRV 上为无意义参数)	

	回复:	
version	RYMLASER<本机型号><版本号>	
temp	返回当前环境温度值,激光器温度	
tec x	x 为摄氏温度,设置激光器的目标温度,可为小数,	
tecp kP kI kD	设定温度控制系统的 PID 参数, 用以保证温度控制系统的稳定,	
	用户可以调整参数以实现快速或慢速响应	

	仅限专业用户使用! 不良的 PID 参数会导致温度震荡, 甚至损坏激
	光器
	系统出厂值: kP =1500; kI=4000; kD=10
tecfast	TEC 常规模式,使用已存储的 PID 参数
tecslow	TEC 慢速模式,使 kP/2, kI/8,将降低温度系统的时间常数

	a:电流设定(0~65535)
	b: 限流设定 (0~65535)
	c: 无意义参数, 设置为 1 以上数值
bias a b c	a 和 b 数值通过下述公式计算
	a = (lset/lmax)*65536
	Iset 为要设定的电流,Imax 为仪器最大电流(根据本机型号,在
	Instrument.ini 中查看)
save	保存当前的所有参数,下次开机会自动调用。

安装注意

- 1、 激光器有功能引脚接外壳情况下(如 NEL 激光器,通常 LD 阳极接外壳),必须将激光器外壳与底座绝缘:激光器下方垫一层导热硅胶垫,并且不要使用金属螺钉来固定。
- 2、 激光电流档位需要通过跳线帽来实现,再通过拨码1来使系统自我识别。两者不匹配将导致系统的自我识别和实际电流不匹配,可能导致激光器烧毁!
- 3、 建议先连接一个 LED 灯珠或廉价红色激光器来测试当前设置是否正常工作。
- 4、 温度震荡说明温控 PID 参数设置不对 (所有温度控制器都有 PID 参数选择环节,可以参照网上多种说明来调整)。温控参数调节命令为 tecp、kp、kl、kd,发送后会立刻产生效果,观察温度的响应精度和速度。调节完成后要用 save 命令保存。
- 5、 模块没有开关, 连接电源后 TEC 部分立刻开始工作, 但激光电流源不启动。绿灯表示温度已稳定。 用跳线帽短接 RX 和 GND, 使电流源开始工作, 请在参数完 quan 设置好后再使用本功能。